🟨 Binary Tree Level Order Traversal (#102)
🔗 Problem Link
📋 Problem Statement
Given the root of a binary tree, return the level order traversal of its nodes' values. (i.e., from left to right, level by level).
💡 Examples
Example 1
Input: root = [3,9,20,null,null,15,7]
Output: [[3],[9,20],[15,7]]
Example 2
Input: root = [1]
Output: [[1]]
Example 3
Input: root = []
Output: []
🔑 Key Insights & Approach
Core Observation: Use BFS (queue) to traverse level by level. Process all nodes at current level before moving to next.
Why BFS (Queue)?
- Natural fit for level order traversal
- O(n) time, O(n) space
- Easy to group by level
Approaches:
- Iterative BFS with queue: O(n) time, O(n) space - standard
- Recursive DFS with level tracking: O(n) time, O(h) space
Pattern: "BFS Level Order Traversal" pattern.
🐍 Solution: Python
Approach 1: BFS with Queue
Time Complexity: O(n) | Space Complexity: O(n)
from collections import deque
from typing import Optional, List
class TreeNode:
def __init__(self, val=0, left=None, right=None):
self.val = val
self.left = left
self.right = right
class Solution:
def levelOrder(self, root: Optional[TreeNode]) -> List[List[int]]:
if not root:
return []
result = []
queue = deque([root])
while queue:
level_size = len(queue)
level = []
for _ in range(level_size):
node = queue.popleft()
level.append(node.val)
if node.left:
queue.append(node.left)
if node.right:
queue.append(node.right)
result.append(level)
return result
Approach 2: DFS with Level Tracking
Time Complexity: O(n) | Space Complexity: O(h)
from typing import Optional, List
class Solution:
def levelOrder(self, root: Optional[TreeNode]) -> List[List[int]]:
result = []
def dfs(node, level):
if not node:
return
# Create new level if needed
if len(result) == level:
result.append([])
result[level].append(node.val)
dfs(node.left, level + 1)
dfs(node.right, level + 1)
dfs(root, 0)
return result
🔵 Solution: Golang
Approach: BFS
Time Complexity: O(n) | Space Complexity: O(n)
type TreeNode struct {
Val int
Left *TreeNode
Right *TreeNode
}
func levelOrder(root *TreeNode) [][]int {
if root == nil {
return [][]int{}
}
result := [][]int{}
queue := []*TreeNode{root}
for len(queue) > 0 {
levelSize := len(queue)
level := []int{}
for i := 0; i < levelSize; i++ {
node := queue[0]
queue = queue[1:]
level = append(level, node.Val)
if node.Left != nil {
queue = append(queue, node.Left)
}
if node.Right != nil {
queue = append(queue, node.Right)
}
}
result = append(result, level)
}
return result
}