Skip to main content

🟨 Binary Tree Level Order Traversal (#102)

📋 Problem Statement

Given the root of a binary tree, return the level order traversal of its nodes' values. (i.e., from left to right, level by level).

💡 Examples

Example 1

Input: root = [3,9,20,null,null,15,7]
Output: [[3],[9,20],[15,7]]

Example 2

Input: root = [1]
Output: [[1]]

Example 3

Input: root = []
Output: []

🔑 Key Insights & Approach

Core Observation: Use BFS (queue) to traverse level by level. Process all nodes at current level before moving to next.

Why BFS (Queue)?

  • Natural fit for level order traversal
  • O(n) time, O(n) space
  • Easy to group by level

Approaches:

  1. Iterative BFS with queue: O(n) time, O(n) space - standard
  2. Recursive DFS with level tracking: O(n) time, O(h) space

Pattern: "BFS Level Order Traversal" pattern.

🐍 Solution: Python

Approach 1: BFS with Queue

Time Complexity: O(n) | Space Complexity: O(n)

from collections import deque
from typing import Optional, List

class TreeNode:
def __init__(self, val=0, left=None, right=None):
self.val = val
self.left = left
self.right = right

class Solution:
def levelOrder(self, root: Optional[TreeNode]) -> List[List[int]]:
if not root:
return []

result = []
queue = deque([root])

while queue:
level_size = len(queue)
level = []

for _ in range(level_size):
node = queue.popleft()
level.append(node.val)

if node.left:
queue.append(node.left)
if node.right:
queue.append(node.right)

result.append(level)

return result

Approach 2: DFS with Level Tracking

Time Complexity: O(n) | Space Complexity: O(h)

from typing import Optional, List

class Solution:
def levelOrder(self, root: Optional[TreeNode]) -> List[List[int]]:
result = []

def dfs(node, level):
if not node:
return

# Create new level if needed
if len(result) == level:
result.append([])

result[level].append(node.val)

dfs(node.left, level + 1)
dfs(node.right, level + 1)

dfs(root, 0)
return result

🔵 Solution: Golang

Approach: BFS

Time Complexity: O(n) | Space Complexity: O(n)

type TreeNode struct {
Val int
Left *TreeNode
Right *TreeNode
}

func levelOrder(root *TreeNode) [][]int {
if root == nil {
return [][]int{}
}

result := [][]int{}
queue := []*TreeNode{root}

for len(queue) > 0 {
levelSize := len(queue)
level := []int{}

for i := 0; i < levelSize; i++ {
node := queue[0]
queue = queue[1:]

level = append(level, node.Val)

if node.Left != nil {
queue = append(queue, node.Left)
}
if node.Right != nil {
queue = append(queue, node.Right)
}
}

result = append(result, level)
}

return result
}

📚 References